Friday, September 7, 2018

Milling Processes and Operations

7.6.5 Mullick and Bhattacharyya

Milling a slot - with a milling cutter

Milling  flat surface - with a helical tooth plain milling cutter

Millng a flat surface - with the side of a side millign cutter

Side milling with half-side milling cutter

Milling a semicircular groove
Milling a vee-groove

Straddle milling the sides of a projection with a set of half-side m milling cutters

Gang milling a complex form with a set of  milling cutters of various types

Vertical Milling Machine Operations

Milling a flat surface with an inserted  blade milling cutter

Milling a slot with an end mill

Milling two surfaces of a recess by an end mill.

Friday, August 31, 2018

Hugh Jack - Engineering Materials - Online Article


Industrial Automation
Engineering Design
Electrical Engineering
Professional Engineering Topics
Computer Hardware
Manufacturing Processes
Mechanical Engineering
Quality Control
Computer Software
Labs and Tutorials
Hugh Jack Publications

Sunday, August 19, 2018

Band Brakes - Machine Element

22—15 Band Brakes
Machine Elements in Mechanical Design, 6/E
Robert L. Mott, University of Dayton
Edward M. Vavrek, Purdue University Northwest
Jyhwen Wang, Texas A & M University

A band brake is a primary or secondary brake, consisting of a band of friction material that tightens concentrically around a cylindrical piece of equipment to either prevent it from rotating (a static or "holding" brake), or to slow it (a dynamic brake). This application is common on winch drums and chain saws and is also used for some bicycle brakes.

Band Brake - NPTEL material

Band Brake design equation

Band Brake Removal & Installation

________________ upload

Saturday, August 18, 2018

Machine Design and Design of Machine Elements - Books - Bibliography

Machine Elements in Mechanical Design, 6/E
Robert L. Mott, University of Dayton
Edward M. Vavrek, Purdue University Northwest
Jyhwen Wang, Texas A & M University
ISBN-10: 0134441184 • ISBN-13: 9780134441184
©2018 • Pearson • Cloth, 880 pp
Published 28 Feb 2017

Table of Contents

Part 1 Principles of Design and Stress Analysis

1 The Nature of Mechanical Design

The Big Picture

You Are the Designer

1—1 Objectives of this Chapter

1—2 The Design Process

1—3 Skills Needed in Mechanical Design

1—4 Functions, Design Requirements, and Evaluation Criteria

1—5 Example of the Integration of Machine Elements into a Mechanical Design

1—6 Computational AIDS in this Book

1—7 Design Calculations

1—8 Preferred Basic Sizes, Screw Threads, and Standard Shapes

1—9 Unit Systems

1—10 Distinction Among Weight, Force, and Mass


Internet Sites for General Mechanical Design

Internet Sites for Innovation and Managing Complex Design

2 Materials in Mechanical Design

The Big Picture

You Are the Designer

2—1 Objectives of this Chapter

2—2 Properties of Materials

2—3 Classification of Metals and Alloys

2—4 Variability of Material Properties Data

2—5 Carbon and Alloy Steel

2—6 Conditions for Steels and Heat Treatment

2—7 Stainless Steels

2—8 Structural Steel

2—9 Tool Steels

2—10 Cast Iron

2—11 Powdered Metals

2—12 Aluminum

2—13 Zinc Alloys and Magnesium

2—14 Nickel-Based Alloys and Titanium

2—15 Copper, Brass, and Bronze

2—16 Plastics

2—17 Composite Materials

2—18 Materials Selection


Internet Sites Related to Design Properties of Materials


Supplementary Problems

Internet-Based Assignments

3 Stress and Deformation Analysis

The Big Picture

You Are the Designer

3—1 Objective of This Chapter

3—2 Philosophy of a Safe Design

3—3 Representing Stresses on a Stress Element

3—4 Normal Stresses Due to Direct Axial Load

3—5 Deformation Under Direct Axial Loading

3—6 Shear Stress Due to Direct Shear Load

3—7 Torsional Load — Torque, Rotational Speed, and Power

3—8 Shear Stress Due to Torsional Load

3—9 Torsional Deformation

3—10 Torsion in Members Having Noncircular Cross Sections

3—11 Torsion in Closed, Thin-Walled Tubes

3—12 Torsion in Open Thin-Walled Tubes

3—13 Shear Stress Due to Bending

3—14 Shear Stress Due to Bending — Special Shearing Stress Formulas

3—15 Normal Stress Due to Bending

3—16 Beams with Concentrated Bending Moments

3—17 Flexural Center for Beam Bending

3—18 Beam Deflections

3—19 Equations for Deflected Beam Shapes

3—20 Curved Beams

3—21 Superposition Principle

3—22 Stress Concentrations

3—23 Notch Sensitivity and Strength Reduction Factor


Internet Sites Related to Stress and Deformation Analysis

4 Combined Stresses

The Big Picture

You Are the Designer

4—1 Objectives of this Chapter

4—2 General Case of Combined Stress

4—3 Stress Transformation

4—4 Mohr’s Circle and Tresca and von Mises Stresses

4—5 Mohr’s Circle Practice Problems

4—6 Mohr’s Circle for Special Stress

4—7 Analysis of Complex Loading Conditions


Internet Sites


5 Design for Different Types of Loading

The Big Picture

You Are the Designer

5-1        Objectives of This Chapter

5-2        Types of Loading and Stress Ratio

5-3        Failure Theories

5-4        Design for Static Loading

5-5        Fatigue Strength and Endurance Strength

5-6        Estimate of Endurance Strength

5-7        Design for Cyclic Loading

5-8        Recommended Design and Processing for Fatigue Loading

5-9        Design Factors

5-10      Design Philosophy

5-11      General Design Procedure

5-12      Design Examples

5-13      Statistical Approaches to Design

5-14      Finite Life and Damage Accumulation Method

6 Columns

The Big Picture

You Are the Designer

6—1 Objectives of this Chapter

6—2 Properties of the Cross Section of a Column

6—3 End Fixity and Effective Length

6—4 Slenderness Ratio

6—5 Transition Slenderness Ratio

6—6 Long Column Analysis: The Euler Formula

6—7 Short Column Analysis: The J. B. Johnson Formula

6—8 Column Analysis Spreadsheet

6—9 Efficient Shapes for Column Cross Sections

6—10 The Design of Columns

6—11 Crooked Columns

6—12 Eccentrically Loaded Columns



Part 2 Design of a Mechanical Drive

7 Belt Drives and Chain Drives

The Big Picture

You Are the Designer

7—1 Objectives of this Chapter

7—2 Kinematics of Belt and Chain Drive Systems

7—3 Types of Belt Drives

7—4 V-Belt Drives

7—5 Synchronous Belt Drives

7—6 Chain Drives

7—7 Wire Rope


Internet Sites Related to Belt Drives and Chain



8 Kinematics of Gears

The Big Picture

You Are the Designer

8—1 Objectives of This Chapter

8—2 Spur Gear Styles

8—3 Spur Gear Geometry: Involute-Tooth Form

8—4 Spur Gear Nomenclature and Gear-Tooth Features

8—5 Interference between Mating Spur Gear Teeth

8 -6 Internal Gear Geometry

8—7 Helical Gear Geometry

8—8 Bevel Gear Geometry

8—9 Types of Wormgearing

8—10 Geometry of Worms and Wormgears

8—11 Gear Manufacturing

8—12 Gear Quality

8—13 Velocity Ratio and Gear Trains

8—14 Devising Gear Trains


Internet Sites Related to Kinematics of Gears


9 Spur Gear Design

The Big Picture

You Are the Designer

9—1 Objectives of this Chapter

9—2 Concepts from Previous Chapters

9—3 Forces, Torque, and Power in Gearing

9—4 Allowable Stress Numbers

9—5 Bending Stress in Gear Teeth

9—6 Contact Stress in Gear Teeth

9—7 Metallic Gear Materials

9—8 Selection of Gear Material

9—9 Design of Spur Gears

9—10 Gear Design for the Metric Module System

9—11 Computer-Aided Spur Gear Design and Analysis

9—12 Use of the Spur Gear Design Spreadsheet

9—13 Power-Transmitting Capacity

9—14 Plastics Gearing

9—15 Practical Considerations for Gears and Interfaces with other Elements


Internet Sites Related to Spur Gear Design


10 Helical Gears, Bevel Gears, and Wormgearing

The Big Picture

You Are the Designer

10—1 Objectives of this Chapter

10—2 Forces on Helical Gear Teeth

10—3 Stresses in Helical Gear Teeth

10—4 Pitting Resistance for Helical Gear Teeth

10—5 Design of Helical Gears

10—6 Forces on Straight Bevel Gears

10—7 Bearing Forces on Shafts Carrying Bevel Gears

10—8 Bending Moments on Shafts Carrying Bevel Gears

10—9 Stresses in Straight Bevel Gear Teeth

10—10 Forces, Friction, and Efficiency in Wormgear Sets

10—11 Stress in Wormgear Teeth

10—12 Surface Durability of Wormgear Drives

10—13 Emerging Technology and Software for Gear Design


Internet Sites Related to Helical Gears, Bevel Gears, and Wormgearing


11 Keys, Couplings, and Seals

The Big Picture

You Are the Designer

11—1 Objectives of this Chapter

11—2 Keys

11—3 Materials for Keys

11—4 Stress Analysis to Determine Key Length

11—5 Splines

11—6 Other Methods of Fastening Elements to Shafts

11—7 Couplings

11—8 Universal Joints

11—9 Other Means of Axial Location

11—10 Types of Seals

11—11 Seal Materials


Internet Sites for Keys, Couplings, and Seals


12 Shaft Design

The Big Picture

You Are the Designer

12—1 Objectives of This Chapter

12—2 Shaft Design Procedure

12—3 Forces Exerted on Shafts by Machine Elements

12—4 Stress Concentrations in Shafts

12—5 Design Stresses for Shafts

12—6 Shafts in Bending and Torsion Only

12—7 Shaft Design Examples–Bending and Torsion Only

12—8 Shaft Design Example–Bending and Torsion with Axial Forces

12—9 Spreadsheet Aid for Shaft Design

12—10 Shaft Rigidity and Dynamic Considerations

12—11 Flexible Shafts


Internet Sites for Shaft Design


13 Tolerances and Fits

The Big Picture

You Are the Designer

13—1 Objectives of this Chapter

13—2 Factors Affecting Tolerances and Fits

13—3 Tolerances, Production Processes, and Cost

13—4 Preferred Basic Sizes

13—5 Clearance Fits

13—6 Interference Fits

13—7 Transition Fits

13—8 Stresses for Force Fits

13—9 General Tolerancing Methods

13—10 Robust Product Design


Internet Sites Related to Tolerances and Fits


14 Rolling Contact Bearings

The Big Picture

You Are the Designer

14—1 Objectives of This Chapter

14—2 Types of Rolling Contact Bearings

14—3 Thrust Bearings

14—4 Mounted Bearings

14—5 Bearing Materials

14—6 Load/Life Relationship

14—7 Bearing Manufacturers’ Data

14—8 Design Life

14—9 Bearing Selection: Radial Loads Only

14—10 Bearing Selection: Radial and Thrust Loads Combined

14—11 Bearing Selection from Manufacturers’ Catalogs

14—12 Mounting of Bearings

14—13 Tapered Roller Bearings

14—14 Practical Considerations in the Application of Bearings

14—15 Importance of Oil Film Thickness in Bearings

14—16 Life Prediction under Varying Loads

14—17 Bearing Designation Series


Internet Sites Related to Rolling Contact Bearings


15 Completion of the Design of a Power Transmission

The Big Picture

15—1 Objectives of this Chapter

15—2 Description of the Power Transmission to be Designed

15—3 Design Alternatives and Selection of the Design Approach

15—4 Design Alternatives for the Gear-Type Reducer

15—5 General Layout and Design Details of the Reducer

15—6 Final Design Details for the Shafts

15—7 Assembly Drawing


Internet Sites Related to Transmission Design

Part 3 Design Details and Other Machine Elements

16 Plain Surface Bearings

The Big Picture

You Are the Designer

16—1 Objectives of This Chapter

16—2 The Bearing Design Task

16—3 Bearing Parameter, μn/p

16—4 Bearing Materials

16—5 Design of Boundary-Lubricated Bearings

16—6 Full-Film Hydrodynamic Bearings

16—7 Design of Full-Film Hydro-dynamically Lubricated Bearings

16—8 Practical Considerations for Plain Surface Bearings

16—9 Hydrostatic Bearings

16—10 Tribology: Friction, Lubrication, and Wear


Internet Sites Related to Plain Bearings and Lubrication

17 Linear Motion Elements

The Big Picture

You Are the Designer

17—1 Objectives of This Chapter

17—2 Power Screws

17—3 Ball Screws

17—4 Application Considerations for Power Screws and Ball Screws


Internet Sites for Linear Motion Elements


18 Springs

The Big Picture

You Are the Designer

18—1 Objectives of this Chapter

18—2 Kinds of Springs

18—3 Helical Compression Springs

18—4 Stresses and Deflection for Helical Compression Springs

18—5 Analysis of Spring Characteristics

18—6 Design of Helical Compression Springs

18—7 Extension Springs

18—8 Helical Torsion Springs

18—9 Improving Spring Performance by Shot Peening

18—10 Spring Manufacturing


Internet Sites Relevant to Spring Design


19 Fasteners

The Big Picture

You Are the Designer

19—1 Objectives of this Chapter

19—2 Bolt Materials and Strength

19—3 Thread Designations and Stress Area

19—4 Clamping Load and Tightening of Bolted Joints

19—5 Externally Applied Force on a Bolted Joint

19—6 Thread Stripping Strength

19—7 Other Types of Fasteners and Accessories

19—8 Other Means of Fastening and Joining


Internet Sites Related to Fasteners


20 Machine Frames, Bolted Connections, and Welded Joints

The Big Picture

You Are the Designer

20—1 Objectives of this Chapter 6

20—2 Machine Frames and Structures

20—3 Eccentrically Loaded Bolted Joints

20—4 Welded Joints


Internet Sites for Machine Frames, Bolted Connections, and Welded Joints


21 Electric Motors and Controls

The Big Picture

You Are the Designer

21—1 Objectives of This Chapter

21—2 Motor Selection Factors

21—3 AC Power and General Information about AC Motors 6

21—4 Principles of Operation of AC Induction Motors

21—5 AC Motor Performance

21—6 Three-Phase, Squirrel-Cage Induction Motors

21—7 Single-Phase Motors

21—8 AC Motor Frame Types and Enclosures

21—9 Controls for AC Motors

21—10 DC Power

21—11 DC Motors

21—12 DC Motor Control

21—13 Other Types of Motors


Internet Sites for Electric Motors and Controls


22 Motion Control: Clutches and Brakes

The Big Picture

You Are the Designer

22—1 Objectives of this Chapter

22—2 Descriptions of Clutches and Brakes

22—3 Types of Friction Clutches and Brakes

22—4 Performance Parameters

22—5 Time Required to Accelerate a Load

22—6 Inertia of a System Referred to the Clutch Shaft Speed

22—7 Effective Inertia for Bodies Moving Linearly

22—8 Energy Absorption: Heat-Dissipation Requirements

22—9 Response Time

22—10 Friction Materials and Coefficient of Friction

22—11 Plate-Type Clutch or Brake

22—12 Caliper Disc Brakes

22—13 Cone Clutch or Brake

22—14 Drum Brakes

22—15 Band Brakes

22—16 Other Types of Clutches and Brakes


Internet Sites for Clutches and Brakes


23 Design Projects

23—1 Objectives of this Chapter

23—2 Design Projects

List of Appendices

Appendix 1 Properties of Areas

Appendix 2 Preferred Basic Sizes and Screw Threads

Appendix 3 Design Properties of Carbon and Alloy Steels

Appendix 4 Properties of Heat-Treated Steels

Appendix 5 Properties of Carburized Steels

Appendix 6 Properties of Stainless Steels

Appendix 7 Properties of Structural Steels

Appendix 8 Design Properties of Cast Iron–U.S. Units Basis

Appendix 8A Design Properties of Cast Iron–SI Units Basis

Appendix 9 Typical Properties of Aluminum

Appendix 10-1 Properties of Die-Cast Zinc Alloys

Appendix 10-2 Properties of Die-Cast Magnesium Alloys

Appendix 11-1 Properties of Nickel-Based Alloys

Appendix 11-2 Properties of Titanium Alloys

Appendix 12 Properties of Bronzes, Brasses, and Other Copper Alloys

Appendix 13 Typical Properties of Selected Plastics

Appendix 14 Beam-Deflection Formulas

Appendix 15 Commercially Available Shapes Used for Load-Carrying Members

Appendix 16 Conversion Factors

Appendix 17 Hardness Conversion Table

Appendix 18 Stress Concentration Factors

Appendix 19 Geometry Factor, I, for Pitting for Spur Gears

Fundamentals of Machine Design, Volume 1
Ajeet Singh
Cambridge University Press, 15-Sep-2017 - Technology & Engineering - 928 pages

Providing extensive coverage and comprehensive discussion on the fundamental concepts and processes of machine design, this book begins with detailed discussion of the types of materials, their properties and selection criteria for designing. The text, the first volume of a two volume set, covers different types of stresses including direct stress, bending stress, torsional stress and combined stress in detail. It goes on to explain various types of temporary and permanent joints including pin joint, cotter joint, threaded joint and welded joint. Finally, the book covers the design procedure of keys, cotters, couplings, shafts, levers and springs. Also examined are applications of different types of joints used in boilers, bridges, power presses, automobile springs, crew jack and coupling.

Table of Contents
List of figures
List of tables
1. Introduction to machine design
2. Materials, properties, and selection
3. Limits, tolerance, and fits
4. Manufacturing aspects in design
5. Direct simple stresses
6. Bending stresses
7. Torsional stresses
8. Combined stresses
9. Stress concentration
10. Endurance strength
11. Fluctuating stresses
12. Cotter joints
13. Pin joints
14. Riveted joints
15. Welded joints
16. Bolted joints
17. Eccentric loading
18. Power screws
19. Shafts and keys
20. Couplings
21. Levers
22. Helical springs
23. Leaf springs
Index.  Preview

Saturday, August 11, 2018

Tuesday, October 3, 2017

Exciting New Technologies with Great Promise and Benefit to Mankind

20 Technologies to change the world
By Tim Fryer
Published Friday, September 22, 2017

1.  Autonomous vehicles

Recent Patents

Smart vehicle

A smart vehicle can be operated by generating a 3D model of a sensor's field of view; receiving information from neighboring vehicles to compensate for blindspots in the sensor's field of view and in a driver's field of view; receiving traffic information, weather information; adjusting one or more characteristics of the plurality of 3D models based on the received traffic and weather information and blindspot information; aggregating the plurality of 3D models to generate a comprehensive 3D model; and combining the comprehensive 3D model with detailed map information; and using the combined comprehensive 3D model with detailed map information to maneuver the vehicle.
Images (50)
Filing date 2015-06-05 Publication date 2016-12-08

Autonomous vehicle navigation system and method

An autonomous vehicle is improved with a navigational system having both cameras and echolocation sensors, each including overlapping fields of view. The cameras and echolocation sensors may be part of an optical and echolocation system, respectively, that may work in conjunction with a global positioning system to determine a course for the autonomous vehicle to reach an objective while detecting and avoid obstacles along the course.
Filing date 2015-03-13 Publication date 2015-09-17

Augmented intelligence

System and Method for Augmenting Healthcare Provider Performance

A system and method for augmenting healthcare-provider performance employs a head-mounted computing device that includes camera and microphones to capture a patient encounter and events immediately before and after: video, dictation and dialog. Wearing the device by the provider during the encounter permits normal interaction between provider and patient, encouraging the provider to maintain focus on the patient. An “ears-open” earpiece delivers audio data from a remote location without obstructing the ear canal. Augmented reality multimedia is displayed via a heads-up display over the eye(s). Real-time capture of audio and video enables dramatic cost reductions by saving doctor time. Using the system, a doctor no longer need spend hours daily on transcription and EHR entry. A patient encounter is captured and transmitted to a remote station. Relevant parts of the encounter are saved or streamed, and updates to an EHR are entered for provider confirmation after the patient encounter.
Filing date 2013-04-17 Publication date 2014-08-07

Augmenting a business intelligence report with a search result

A computer augments a business intelligence report. The computer populates a business intelligence report with business data imported from business data storage, and with a stored internet search query. The computer causes the display of the business data of the business intelligence report. The computer also transmits one or both of a term of the stored internet search query or of referenced business data of the stored internet search query to a designated search engine, and receives a contemporary search result from the designated search engine. The computer causes the display of the contemporary search result.
Filing date 2013-04-09 Publication date 2014-10-09